

CIRCULAR SAW MONITORING SYSTEM

Ahmad Mohammadpanah

Copie et redistribution interdites. Copying and redistribution prohibited.

PRIMARY WOOD PRODUCTS MANUFACTURING

SIMULATION OF A GUIDED SAW, SPEED RAMPING

SAW RUNNING AT CRITICAL SPEED

SAW CUTTING AT CRITICAL AND SUPERCRITICAL SPEEDS

MEASURING VIBRATIONS OF SAW AS SPEED RAMPS UP

DEFLECTION OF THE BLADE DURING SPEED RAMP UP

EFFECT OF HEAT ON DYNAMIC BEHAVIOUR OF SAW

EFFECT OF HEAT ON SAWING PERFORMANCE

HEAT RESULTS IN HIGH SAWING DEVIATION.

THE FEASIBILITY OF DEVELOPING A MONITORING SYSTEM FOR GUIDED CIRCULAR SAW

Safe area for placing a sensor

CHOICE OF SENSORS

EXPERIMENTAL SETUP

Dynamometer (Force Sensor) Placed between the guide arm and machine frame.

SAW DEFLECTION BELOW THE GUIDE DOES NOT CORRELATE TO WHAT IS HAPPENING IN THE CUT ZONE.

FORCE AND VIBRATION SIGNALS ARE TOO NOISY TO INDICATE SAW DEFLECTION.

LAB TESTS INDICATED THAT THERE IS A CORRELATION BETWEEN CUT DEVIATION AND AE SIGNAL.

Sensor Force

SAWMILL TEST CONFIRMED AE IS NOT SUITABLE FOR THIS APPLICATION.

- Signal by AE can be affected by:
 - Multiple saws work together
 - •Other mechanisms working simultaneously

SAWING PERFORMANCE.

?

NO DIRECT CORRELATION WITH CUT DEVIATION, BUT MACHINE LEARNING TECHNIQUE CAN BE USED TO FIND PATTERNS BETWEEN GOOD AND BAD

28 DIRECT MEASUREMENT OF SAW DEFLECTION ABOVE THE CUT

29 DIRECT MEASUREMENT OF SAW DEFLECTION ABOVE THE CUT

Accurately measures saw deflection in lab tests

• Limitations: Needs to be very close to the saw

IN SUMMARY:

BLADE TEMPERATURE IS CRITICAL TO SAW STIFFNESS

MEASURING SAW TEMPERATURE

BLADE TEMPERATURE IN A CUT

30 Time (Sec.) 70

BLADE TEMPERATURE IN A CUT

30 Time (Sec.) 70

Temperature

BLADE TEMPERATURE IN A CUT

30 Time (Sec.) 70

Temperature

BLADE TEMPERATURE IN A CUT

BLADE TEMPERATURE IN A CUT

BLADE TEMPERATURE IN A CUT

APPLICATIONS OF THE TEMPERATURE DATA

- •Warnings, perhaps before problems become critical
- Adjust amount of guide water
- Adjust gap between cuts to allow saw to cool
- •Feed speed control is possible.

SUMMARY

✓ Indirect measurements (Force, Acceleration, Acoustic) does not correlate to what is happening in the cut.

SUMMARY

The temperature sensor can be used for some monitoring options, such as gap between cuts.

SUMMARY

✓ Indirect measurements (Force, Acceleration, Acoustic) does not correlate to what is happening in the cut.

- options, such as gap between cuts.
- critical.

SUMMARY

✓ Indirect measurements (Force, Acceleration, Acoustic) does not correlate to what is happening in the cut.

The temperature sensor can be used for some monitoring

✓ The temperature sensor can indicate poor cutting conditions, and provide warning before it becomes

- options, such as gap between cuts.
- critical.

shooting tool.

SUMMARY

✓ Indirect measurements (Force, Acceleration, Acoustic) does not correlate to what is happening in the cut.

✓ The temperature sensor can be used for some monitoring

✓ The temperature sensor can indicate poor cutting conditions, and provide warning before it becomes

The temperature sensor can be used as a trouble-

FPInnovations

GET IN TOUCH

Ahmad Mohammadpanah, PhD, PEng Mechanical Engineer Ahmad.Panah@fpinnovations.ca 604-222-5613

fpinnovations.ca

blog.fpinnovations.ca

HOW TO EVALUATE CUTTING PERFORMANCE?

HOW TO EVALUATE CUTTING PERFORMANCE?

HOW TO QUANTIFY SENSORS DATA?

HOW TO QUANTIFY SENSORS DATA?

